Tag Archive | "About"

Dairy Cares about Sustainability

Tags: , , ,

Dairy Cares about Sustainability

Posted on 19 March 2017 by admin

California’s 1750 dairy families are dedicated to sustainable dairy farming practices now and in the future. This means: World-class environmental stewardship and innovation; Responsible care and treatment of dairy cattle; Healthy, nutritious and affordable dairy products for millions of families; and Jobs for hundreds of thousands of Californians. Learn more about the sustainability achievements of California dairy families at www.DairyCares.com.

Comments (0)

Milk Comes From Grieving Mothers – Truth About Organic Dairy

Tags: , , , , , , , ,

Milk Comes From Grieving Mothers – Truth About Organic Dairy

Posted on 09 November 2016 by admin

Lena, a mother cow’s perspective of her experience as a dairy cow. The truth about organic dairy. From Organic Valley/CROPP Cooperative: “Economically, it is not possible for farmers to keep retired cows on the farm…. Organically raised cows will stay a part of the herd for an average of 6-8 years verses conventionally raised cows who only average 4 years….” (PPS: this means that organically raised cows have two more years of emotional and physical suffering and two more of their newborn babies stolen from them and murdered for Veal). “We require that the packing plants (another word for slaughterhouse) get certified before we will do business. This means that our animals must be processed (brutally slaughtered) separately with clean equipment. This also means that they cannot use chemicals or pesticides in the plant.” Organic Valley/CROPP Cooperative Consumer Relations www.peacefulprairie.org

Comments (0)

The Whole Truth About Milk: Raw vs. Pasteurized

Tags: , , , ,

The Whole Truth About Milk: Raw vs. Pasteurized

Posted on 02 September 2016 by admin

Today, in 2007, milk has a bad name. Is it the milk itself or is it being processed and delivered in this corporate farming world we now live in? Are the problems we see a result of pasteurizing and homogenizing, which are relatively new developments in the history of milk? Is raw milk a viable alternative? In this program, we’ll take you on a tour of a Raw Milk Dairy Farm, give you the chance to meet the cows themselves and speak with Mark McAfee, the owner of this farm, who happens to be one of the top advocates of raw milk. Then we’ll meet and talk with David Getoff, CCN, CTN, an internationally recognized Traditional Naturopathic Doctor who is an expert on the relationship of natural foods and health. He’ll share with us some amazing facts about processed milk vs. raw milk. For more information, visit www.ppnf.org

Comments (0)

The Truth about Australian Farms

Tags: , , ,

The Truth about Australian Farms

Posted on 21 March 2016 by admin

~PLEASE READ DESCRIPTION FIRST~ WARNING: some people may find some scenes in this video distressing This is just a video i made in my spare time to show what happens in Australian Bobby calf, Pork, Ultra fine wool and Live export industrys. * there is no intention of copyright* Bobby Calfs: over 700000 week-old calves discarded yearly as ‘waste products’ of the dairy industry. Most people aren’t aware that in order to produce milk, dairy cows are kept almost continually pregnant. Unwanted calves (known as ‘bobby calves’) are sent to slaughter in their first week of life so that milk can be harvested for human consumption. Unknown to most consumers, the dairy industry continues to cut costs at the expense of animals. Right now they want to make it legal to deny calves food for the last 30 hours of their lives. Pigs: In Australia, the majority of the 300000 female breeding pigs (sows) are kept inside sheds continually pregnant and confined. It is these animals that produce the piglets destined to become bacon, ham and pork products. Most sows are confined for at least some of their 16 week pregnancy in tiny metal individual stalls, (and one third for the entire pregnancy!) so small they are unable to turn around. At best they can take a small step forward.They have no bedding. They are forced to stand or lie on hard floors. Just prior to giving birth, they are moved to a ‘nursery’ which would outrage every Australian mother. Pending mothers are confined in an even smaller

Comments (6)

Consumers Learn About Dairy Farming Firsthand

Tags: , , , , ,

Consumers Learn About Dairy Farming Firsthand

Posted on 24 January 2016 by admin

Consumers from Sioux Falls and the surrounding towns attended a June Dairy Month tour near Brandon over the weekend at the Ode farm. They got to see firsthand where milk comes from and how its being produced in a safe and environmentally friendly manner. Michelle Rook has the story. Consumer segment on KELO-TV 5pm News. Airdate 6-9-11.
Video Rating: 0 / 5

Comments (1)

6 Most Frequently Asked Questions About Wind Energy

Tags: , , , , , ,

6 Most Frequently Asked Questions About Wind Energy

Posted on 16 November 2015 by admin

buffalo farms
by NedraI

6 Most Frequently Asked Questions About Wind Energy

6 Most Frequently Asked Questions About Wind Energy

1.   How much electricity can one wind turbine generate?

The ability to generate electricity is measured in watts. Watts are very small units, so the terms kilowatt (kW, 1,000 watts), megawatt (MW, 1 million watts), and gigawatt (pronounced “jig -a-watt,” GW, 1 billion watts) are most commonly used to describe the capacity of generating units like wind turbines or other power plants.

Electricity production and consumption are most commonly measured in kilowatthours (kWh). A kilowatt-hour means one kilowatt (1,000 watts) of electricity produced or consumed for one hour. One 50-watt light bulb left on for 20 hours consumes one kilowatt-hour of electricity (50 watts x 20 hours = 1,000 watt-hours = 1 kilowatt-hour).

The output of a wind turbine depends on the turbine’s size and the wind’s speed

through the rotor. Wind turbines being manufactured now have power ratings ranging from 250 watts to 1.8 megawatts (MW).

Example:A 10-kW wind turbine can generate about 16,000 kWh annually, more than enough to power a typical household. A 1.8-MW turbine can produce more than 5.2 million kWh in a year–enough to power more than 500 households. The average U.S. household consumes about 10,000 kWh of electricity each

year.

Example:A 250-kW turbine installed at the elementary school in Spirit Lake, Iowa, (pictured at left) provides an average of 350,000 kWh of electricity per year, more than is necessary for the 53,000-square-foot school. Excess electricity fed into the local utility system has earned the school ,000 over five years. The school uses electricity from the utility at times when the wind does not blow. This project has been so successful that the Spirit Lake school district has since installed a second turbine with a capacity of 750 kW.

Wind speed is a crucial element in projecting turbine performance, and a site’s wind speed is measured through wind resource assessment prior to a wind system’s construction.

Generally, annual average wind speeds greater than four meters per second (m/s) (9 mph) are required for small wind electric turbines (less wind is required for water-pumping operations). Utility-scale wind power plants require minimum average wind speeds of 6 m/s (13 mph).

The power available in the wind is proportional to the cube of its speed, which means that doubling the wind speed increases the available power by a factor of eight. Thus, aturbine operating at a site with an average wind speed of 12 mph could in theory generate about 33% more electricity than one at an 11-mph site, because the cube of 12 (1,768) is 33% larger than the cube of 11 (1,331). (In the real world, the turbine will not produce quite that much more electricity, but it will still generate much more than the 9% difference in wind speed.

The important thing to understand is that what seems like a small difference in wind speed can mean a large difference in available energy and in electricity produced, and therefore, a large difference in the cost of the electricity generated.

2.   How many turbines does it take to make one megawatt (MW)?

Most manufacturers of utility-scale turbines offer machines in the 700-kW to 1.8-MW range. Ten 700-kW units would make a 7-MW wind plant, while 10 1.65-MW machines would make a 18-MW facility. In the future, machines of larger size will be available, although they will probably be installed offshore, where larger transportation and construction equipment can be used.

3.   How many homes can one megawatt of wind energy supply?

An average U.S. household uses about 10,000 kilowatt-hours (kWh) of electricity each year. One megawatt of wind energy can generate between 2.4 million and 3 million kWh annually. Therefore, a megawatt of wind generates about as much electricity as 240 to 300 households use.

It is important to note that since the wind does not blow all of the time, it cannot be the only power source for that many households without some form of storage system. The “number of homes served” is just a convenient way to translate a quantity of electricity into a familiar term that people can understand.

4.   What is a wind power plant?

The most economical application of wind electric turbines is in groups of large machines (660 kW and up), called “wind power plants” or “wind farms.” For example, a 107-MW wind farm near the community of Lake Benton, Minn., consists of turbines sited far apart on farmland along windy Buffalo Ridge (below). The wind farm generates electricity while agricultural use

continues undisturbed.

Wind plants can range in size from a few megawatts to hundreds of megawatts in capacity. Wind power plants are “modular,” which means they consist of small individual modules (the turbines) and can easily be made larger or smaller as needed. Turbines can be added as electricity demand grows. Today, a 50-MW wind farm can be completed in 18 months to two years (including resource assessment and permitting).

5.   What is “capacity factor”?

Capacity factor is one element in measuring the productivity of a wind turbine or any other power production facility. It compares the plant’s actual production over a given period of time with the amount of power the plant would have produced if it had run at full capacity for the same amount of time.

A conventional utility power plant uses fuel, so it will normally run much of the time unless it is idled by equipment problems or for maintenance. A capacity factor of 40% to 80% is typical for conventional plants.

A wind plant is “fueled” by the wind, which blows steadily at times and not at all at other times. Most modern utility-scale wind turbines operate with a capacity factor of 25% to 40%, although they may achieve higher capacity factors during windy weeks or months. It is possible to achieve much higher capacity factors by combining wind with a storage technology such as pumped hydro or compressed-air energy storage (CAES).

It is important to note that while capacity factor is almost entirely a matter of reliability for a fueled power plant, it is not for a wind plant—for a wind plant, it is a matter of economical turbine design. With a very large rotor and a very small generator, a wind turbine would run at full capacity whenever the wind blew and would have a 60-80% capacity factor—but it would produce very little electricity.

The most electricity per dollar of investment is gained by using a larger generator and accepting the fact that the capacity factor will be lower as a result. Wind turbines are fundamentally different from fueled power plants in this respect.

6.   If a wind turbine’s capacity factor is 33%, doesn’t that mean it is only running one third of the time?

No. A wind turbine at a typical location in the Midwestern U.S. should run about 65 – 80% of the time. However, much of the time it will be generating at less than full capacity (see previous answer), making its capacity factor lower.

RunGreenPower.com will teach you how to build solar & wind power systems for
your home within a weekend.
Check It Now: Homemade Soalr Cells

Written by YoniL

Find More Buffalo Farms Articles

Comments (0)

Original By Dairy Farming